
Edexcel Geography GCSE

River Processes and Pressures Detailed Notes

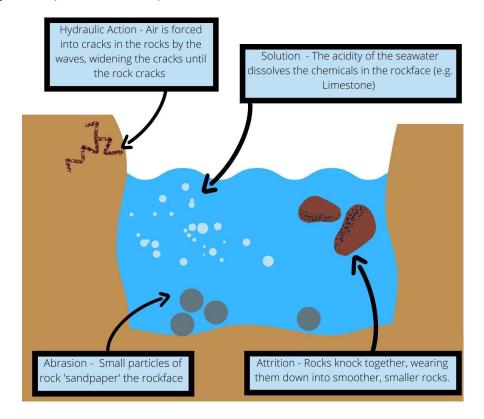
Rivers

Any river is made up of **three sections**: the upper course, middle course and lower course. The shape of the river changes for each section of the river:

- Upper Course The river starts as many tributaries, which are narrow and v-shaped. Each tributary doesn't carry a lot of water, but combined the tributaries all fill up the river channel further down. The sides of the tributaries tend to be like a valley, with a large gradient either side so water can run into the tributary.
- Middle Course The tributaries merge together to form a channel, which is rounder in shape and deeper (to compensate for the increase in water passing by). The more water that passes by, the larger the energy of the water, and so the more erosion can take place to widen the channel. The area around the river channel is flat and low-lying, which is the floodplain if the river needs to flood.
- Lower Course Now the river is on its last stretch before the sea, carrying the largest volume of water in a very wide and very deep channel. There are ridges either side of the river banks called Levees. The size of the valley has increased, so it is even wider and flatter than the middle course.

Source: BBC

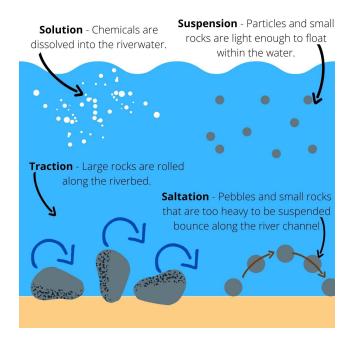
The **speed** the water travels at is dependent on which course of the river it is travelling through. **Friction** occurs between the water and the riverbed which slows the water down. The more contact the water has with the floor, the more friction occurs which means the water travels slower.


- → In the upper course, the channel is shallow and so most of the water passes the riverbed, slowing the rate of flow due to friction. As the river channel gets bigger less water is in contact with the riverbed which means the velocity of the water increases.
- → In the lower course of the river, the water travels a lot **faster** than the upper course as there is **less friction** from the river bed. The river is wider and deeper due to the increased erosion that's occurred from the fast water.

River Processes and Landforms

Erosional Processes

Erosion occurs along the river, the majority of which occurs in the upper and middle course. Erosion can take place downwards on the river bed (vertical erosion) or sideways along the banks of the river (lateral erosion). There are four types of river erosion:


- Abrasion This is the process where rocks carried by the water (the load) scrapes and bangs against the sides of the river and so wear away the channel gradually (like sandpaper against a piece of wood).
- Attrition Rocks and pebbles to hit against each other, wearing each other down and so becoming round and eventually smaller. Attrition reduces the size and shape of the load, but doesn't change the shape of the river channel.
- Hydraulic Action Water under high pressure causes cracks to force apart and widen in any rocks along the banks of the river. Over time this causes the rock to fracture and collapse into the river, expanding the river channel.
- Corrosion (Solution) The river can gradually dissolve chemical compounds in rocks that
 it flows over. For example, limestone can dissolve gradually into the river, if the river water
 is slightly acidic (due to acid rain).

Transportation Processes

Rivers transport material as well as water. The material they transport is called the **load**. The load can include **rocks** eroded from the upper course, dead plants which make the lower course more fertile or **chemical compounds** dissolved into the water. To move the load, there are four different types of transportation. The method of transportation depends on the **size of the load**:

- Solution Chemicals are dissolved in the river water.
- Suspension Particles and small rocks are light enough to float within the water.
- Saltation Pebbles and small rocks which are too heavy to be suspended bounce along the river channel.
- Traction Large rocks are rolled along the river bed.

Exam Tip

It's really important you know the definitions properly for both the **erosional** and **transportational** processes that occur within rivers. They all sound quite similar (there are lots of words beginning with s!) but if an exam asks you to **define** one of them or a question asks you to **explain** processes which occur in a river, you don't want to be caught out. These are easy marks to gain (or lose).

How to revise

- Make cards (in bright colours) and hang them around the house.
- You could learn a word a day (that way you've learnt them in only 8 days!)
- Once you're confident, get anyone you want parents, friends, brothers, sisters, neighbours, random person on the bus to spot test you on them.

Deposition

Deposition is the dropping of the river's load when the water in a river decreases in speed. If the river travels slower, the water has less energy and can carry less material.

The heaviest materials get deposited first: rocks and stones are deposited in the upper course, whereas finer sediment travels as far as the lower course before being deposited. The most deposition occurs in the **lower course** of the river.

You can see large rocks in this picture of the **Aira River** in the **Lake District**. This is in the **upper course** of the river. The water has a low velocity which means it doesn't have the energy to transport such a large load downstream.

(Source: stephanie-green.com/2018/03/29/aira-force-aka-waterfalls-and-rainbows)

River Landforms

There are landforms characteristic of each section of the river. This is because different river processes are prominent in each course:

- **Upper Course**: Erosion is the predominant river process. *Typical Landforms Waterfalls, Interlocking Spurs, V-Shaped Valley*
- Middle Course: Mixture of erosional and depositional landforms
 Typical Landforms Gorges, Meanders
- Lower Course: Deposition is the predominant river process

 Typical Landform Floodplains, Ox-Bow Lake, River Estuary

It's important to be able to identify these features, where they are typically found along the river and how they are formed!

Erosional Landforms

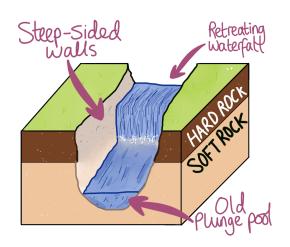
Interlocking Spurs

These are found in the **upper course** of the river where the water doesn't have a lot of energy so isn't very powerful. The **low energy** means the water isn't strong enough to erode **resistant rocks** in the spur. Instead, the river re-routes and curls around them. You can see the river doing this in the picture on the right.

Source: www.internetgeographer.net

Spurs are the bits of the mountain to the left and right of the river which point down towards it. You can see them more clearly in the picture on the left. This is Hell Gill in the Lake District. As there are spurs on either side of the valley, the tributary looks like a zigzag from above.

Source: https://api.gurushots.com/photo/8b88b73bd1389d83f76e79f945115c04


Waterfall

Waterfalls occur when a river flows over rocks with **different resistances** to erosion. Rock which is resistant to erosion is called **hard rock**, and rock which is easily eroded is called **soft rock**.

Step 1	Step 2	Step 3
HARD ROCK SOFT ROCK	SOFT ROCK Erosion	Undercutting Plange Pool
In an area where a river flows over an area of hard rock and soft rock, the soft rock erodes more quickly.	The soft rock erodes away around the hard rock over time, creating a step.	The soft rock continues to erode, undercutting the hard rock. The hard rock is left suspended in the air as an overhang. The rotational movement of the water quickens erosion, creating a deep plunge pool.
Step 4	Step 5	Step 6
Collapsed overhang Plunge pool	Collapsed Overhang Plunge Pool deepens	Waterfall retreats Collapsed overhang Gorge
Due to the force of gravity, the unsupported overhang collapses. The broken up rocks fall into the plunge pool, which act as tools for erosion and further deepens the plunge pool.	Erosion continues to undercut underneath the hard rock, creating an overhang again further upstream.	The continual process of the overhang collapsing causes the waterfall to retreat upstream over time. The plunge pool continues to deepen, and the hard rock continues to be undercut to create an overhang.

Gorges

Gorges form from waterfalls. As the waterfall retreats upstream it leaves behind a steep valley carved into the rock with the river running along the base.

Below is an aerial view of **Victoria falls** which is located on the **border of Zambia and Zimbabwe**. In the left half of the picture you can see a **gorge** with the river flowing at the bottom of it.

On the right side of the picture you can see the white spray from the **waterfall** itself. Over time the waterfall will retreat further upstream.

Source: www.zambiatourism.com/destinations/waterfalls/victoria-falls/the-formation-of-victoria-falls/

Landforms Due to Erosion and Deposition Combined

River landforms can be created by a **combination** of erosion and deposition. Often, these landforms change the shape of the river and are easily identifiable from above.

Meanders

These are **bends** in the shape of the river, often found in the **middle course**. The creation of

meanders is a gradual process which depends on the **velocity** of the water.

- → Water travels faster on the outside of the bend which means lateral erosion takes place here. This leaves a river cliff, as material falls into the river and gets transported downstream.
- → On the opposite side the water travels slowly and changes direction sharply and so the water loses energy and deposits sediment.

→ Hence, erosion wears away a cliff on the outer edge of a bend and deposition creates a slip-off slope on the inside of the bend.

The **thalweg** is the path of the **fastest water**, which can be used to show the locations of erosion and locations of deposition. If asked to draw a meander it's important to draw the thalweg on your diagram, with arrows to show the flow of water.

Tip: If you're struggling to work out where the thalweg should be, imagine the river as a giant waterslide and draw where you would go if you were going down it. You would be flung to the outside of corners wouldn't you?

In the picture below we can see many **meanders**. On the insides of the bends there are small **beaches** which have been formed by the **deposition of sediment** due to the water losing its energy. On the outside of the bends we can see where **erosion** is taking place and the water is cutting into the bank, creating small cliffs.

Can you draw where the thalweg is likely to be on this river using the diagram on the previous page to help you?

Source: http://nwrm.eu/measure/re-meandering

Ox-Bow Lake - Similar to a meander, an **ox-bow lake** is formed due to a combination of **erosion** and **deposition**. You can watch a video of an ox-bow lake forming in the **Ucayali River**, **Peru**, <u>here</u>.

In the beginning, the river has meanders that form depending on the speed of the water.	Erosion happens when the fastest water hits the sides of the meander, whereas deposition occurs on the inside of the bend, where the water is slowest.
Gradually, erosion bends the river so that the meanders travel towards each other.	The neck of the meander will eventually break (normally due to a flood), creating a straight river and a bend where water is slow if not stationary.
	Erosion Deposition
The old meander becomes separated from the main river as material gets deposited at the top, creating the separate ox-bow lake.	

How many ox-bow lakes can you identify in the picture of the Kinabatangan River, Malaysia?

Source: https://mdgradationaltour.wordpress.com/2016/04/11/oxbow-lake/

Depositional Landforms

There are two landforms which are common in the lower course of the river - **floodplains** and **levees** - both of these occur due to deposition.

Deposition determines the lower course's shape, making it distinctive to view from aerial photographs.

Floodplains - The river in the lower course has many large meanders, which grow outwards over time. When a river floods the water spills out onto the surrounding land. The water loses velocity and deposits its load. Deposition of finer sediment called alluvium occurs (the larger materials have been deposited upstream first, leaving finer sediments and silts to be deposited in the lower course).

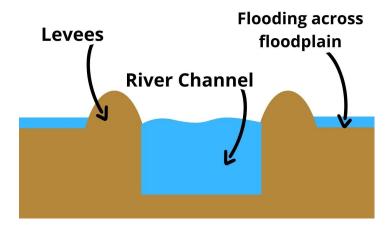

Therefore, floodplains are made from **silts** which make the land **fertile**. This is why lots of farming takes place in the lower course of the river. The picture above shows a farm in West Yeo near Moorland in Somerset. You can see that the fields and farm are built on a floodplain.

Image:

https://ro.pinterest.com/pin/541065342704114389/

Levee - The **banks** of the river in the lower course are called **levees**. They are higher than the height of the water but aren't very wide, since it takes thousands of years for the sediment to build up. If the river floods over the levees, the **floodwater** can reach out far across the **flat floodplain**, as shown in the diagram below.

Every time the river floods, sediment is deposited on the top of the banks and so the levees grow in height. You can watch a video of how they form here.

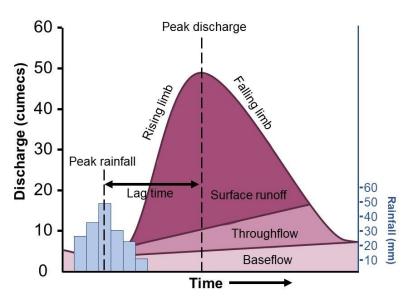
Estuaries - At the **mouth** of the river (where the river joins the sea), the river water is affected by the **tides** as well as the flow of water behind it from the river. Since the river flow becomes disrupted and slowed greatly by the tides, there is a large amount of **deposition**. This can create **mudflats** and **saltmarshes** that over time can build into permanent habitats on the river/coastline.

The picture below shows **Cardiff Bay** in the early 90s. During low tide the sea would retreat leaving **mudflats** behind as seen below. In 1994 construction started on a large scheme which built a **barrage** across the bay to retain water. This meant the bay would always be filled with water. You can read more about this redevelopment project <u>here</u>.

Source: https://en.wikipedia.org/wiki/Cardiff_Bay_Barrage

Flooding

Flooding occurs when an **excess** amount of water fills the river in a **short period** of time. The channel isn't large enough to contain this water and so the river overspills into the land surrounding the banks. Often, the worst flooding occurs across the **floodplains** where the land is flattest and so the flood water travels the furthest. However, this is often the location of farming, towns and businesses who all lose from flooding.

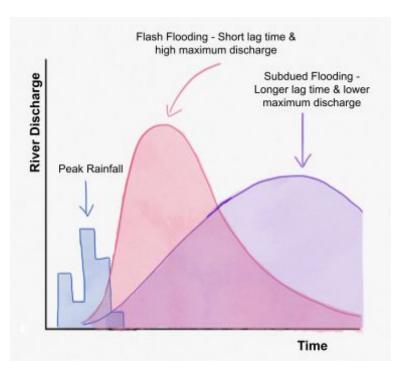

There are several factors - human and physical - that increase the flood risk to a location:

Human factors that increase the flood risk	Physical factors that increase the flood risk
Urbanisation - Increasing the amount of impermeable surfaces (concrete and tarmac, for example) decreases the time taken for water to flow into the river, and so increases the risk of flash flooding.	The rate and volume of rain (precipitation) falling - If there is a storm, and a large amount of rain falls in a short amount of time, the amount of water running into the river is increased. This increases the risk of flash flooding downstream.
Deforestation - Trees intercept the rain and so it takes longer for the rain to travel through the leaves into the river. Therefore, cutting down trees will speed up the time taken for rainwater to flow into the river, increasing the risk of flash flooding .	Geology - If the area has many impermeable rocks, the rainwater can't run into the soil and into underground storage. Instead, the rainwater runs straight into the river, increasing the risk of flash flooding on bad weather days.
The capacity of the river - If the river becomes filled with rubbish and debris , the channel's size will decrease. This means the river can carry less water and so is more likely to flood.	Topography - The shape of the land will determine how quickly rainwater flows into the river. Steep hills with high gradients are more likely to have flash floods than gradual gradients.

Storm Hydrographs

Storm hydrographs represent the variation in the river's **discharge** (the **volume of water** passing through the river channel at a specific point) within a short period.

They are useful in showing how precipitation affects a drainage basin.


Features of storm hydrographs include:

- Peak Precipitation The maximum rainfall that occurs, shown as bar charts at the start of the graph.
- Rising limb The increase of river discharge, not necessarily straight after precipitation.
- Peak flow The maximum discharge, delayed after maximum precipitation has occurred.
- Lag time The time delay between peak rainfall and peak river discharge
- Falling limb As the storm precipitation levels decrease, river discharge will in turn decrease over time.
- Base flow Eventually, the discharge returns to its normal level

Types of flooding

A flood can be described as either **flashy** or **subdued**. The description tends to depend on how quickly the water flows into the river. For example, a **flash flood** tends to be a flood with little warning, where a very large volume of water suddenly overwhelms the river. This can happen if a **large amount of rain occurs in a short period of time**.

On the other hand, a **subdued flood** could take up to a week of consistent rain. There isn't a large quantity of water falling per day, but because the ground is saturated any rain runs straight into the river. This would cause longer term flooding, but wouldn't sweep people or buildings away.

On the storm hydrograph above can you label the rising limb, falling limb, peak flow and lag time? (Hint: there's 2 of each!)

Can you explain why the two are different shapes? (If you're stuck there's a table on the next page which will help)

Factors that affect the shape of the hydrograph:

Below are some key **characteristics** of each type of flooding, as well as some of the **causes**:

	Flashy Storm Hydrograph	Subdued Storm Hydrograph
Description of	Short lag time	Long lag time
hydrograph	High peak	Low peak
	Steep rising limb	Gently sloping rising limb
Weather/Climate	Intense storm or rapid snow melt	Steady rainfall or slow snow melt
Rock type	Impermeable rocks like granite	Permeable rocks like limestone
Relief	High and steep slopes → More runoff	Low and gentle slopes → Less runoff
Basin size	Usually a small drainage basin	Usually a large drainage basin
Vegetation	Few plants or lawn space,	High density of vegetation, which can
	deforestation has reduced the number of trees	intercept and absorb some rainwater

Can you draw the shape of the different storm hydrographs which you think would be created from the descriptions in the table above? *Tip: make sure you label your axis!*

Increasing risks from river flooding

Humans are changing the environment in many different ways, and this is increasing the risk of flooding in many places. Climate change is increasing the frequency and intensity of storms,

and **land-use change** has put more people at **risk**. Severe flooding is now **twice as likely** to occur now compared to 2000!

The winter of 2013-2014 is a prime example of an event that is likely to become more common in the future. The Somerset Levels experienced very severe and extensive flooding, affecting thousands of people and causing widespread damage. The flooding was caused by:

(Source:Matt Cardy/Getty Images)

- Abnormally heavy and prolonged rain: January 2014 was the wettest on record, and around 350mm of rain fell in January and February (100mm above average). This caused rivers to overflow and burst their banks onto the floodplains.
- High tides: Seawater levels were higher due to high tides and storm surges brought by Atlantic depressions. The high tides prevented freshwater from being able to drain into the sea, which made river levels rise further.
- Dredging: Rivers were full of sediment as they had not been dredged in over 20 years. This
 meant less water could be held in the river channel, and they overflowed quicker.
- Land use: Building housing on floodplains puts everyone who lives here at risk of flooding.

Management of Drainage Basins

Why do we want to manage a drainage basin?

Drainage basins are really important to the **people** and **wildlife** that live in a drainage basin, for many different reasons - people live here, fish live in the river and many wildlife live on the banks, farmland tends to be found on the lower course.

However, if drainage basins aren't **managed**, there is a risk that the river might **flood**. Flooding can:

- → Damage properties and families can lose their belongings, which can be upsetting
- → Farmers might lose their crops or cattle might drown in extreme flooding
- → If industry and factories become flooded, workers could lose their jobs so unemployment will rise

So flooding can cause significant **economic** or **social losses**, which will impact the **community** that live within the drainage basin.

Sustainable Management

Attempting to manage a drainage basin **sustainably** can be challenging. There are **hard engineering** and **soft engineering** strategies, each with their own benefits and costs.

Sustainable means that a strategy will stop flooding in the future, whilst protecting the people that live there now. There are many things to consider to decide if a management strategy is sustainable:

- ★ Are the resources/materials renewable and safe for the environment?
- ★ Will machinery produce carbon dioxide emissions, which contribute to global warming?
- ★ Are long term jobs created to keep the river maintained? Jobs keep the economy going, as well as making sure any management strategy doesn't crumble away
- ★ Is there an impact to the environment and wildlife that live in the river?

Choosing a Management Strategy

There are many factors to consider when choosing the most appropriate management strategy:

- The **economic** value of the land:
 - o How many jobs depend on the river?
 - o Are there business parks or industries built in the floodplains at risk from flooding?
 - o What will the insurance cost be for a flood?
 - o How much does it cost the government to respond to a serious flood (emergency services, army etc)?

- The cultural or social value:
 - o Is the river historic or a location of cultural/religious importance?
 - o Do events or festivals happen here, and on what scale do they affect lives (locally, national, international events)?
 - o Are the river's floodplains home to a village or town? Will these people need to migrate and live elsewhere if flooding continues?
 - o Is there a risk to life during flooding?
- The environmental value:
 - o Are there any rare or endangered species living along the river banks or in the river?
 - o Would nature reserves become at risk if flooding continues?
 - o Are there any farms at risk? What would happen to the cattle?

Soft Engineering Strategies

Soft engineering uses more natural materials to restore the river's natural state or reduce the damage caused by flooding, in a more environmentally friendly way. Unlike hard engineering, soft engineering aims to **complement the physical environment** by using natural materials.

River Channel Restoration

Source: Sustainable City Network

Description: Concrete structures are replaced with natural sediment, meanders are rebuilt to slow down the water, banks are lowered so floodplains can flood naturally.

- More natural resources and concrete discouraged, which is heavily polluting to produce
- The natural environment benefits, as the ecology recovers
- Land will still flood, but often this is parks and football fields

Wetlands

Source: Norfolk Wildlife Trust

Description: Vegetation is planted and legal protection stops building on wetlands.

- Wetlands store river water and can flood when needed, with no damage to houses
- Creates valuable habitats for river wildlife
- It takes a long time for wetlands to establish and grow

Hard Engineering Strategies

Hard engineering uses man-made, artificial structures to change the shape of the river or control the flow of water. They are often very effective but are high cost and have a significant environmental impact due to the use of concrete and other man-made materials.

Dams

Source: Elan Valley

Description: Concrete blockade that stores water in the upper course and can regulate river flow.

- Valves can control and release the right amount of water to avoid flooding
- Can generate electricity (HEP)
- Visually appealing
- Villages can be flooded to create the reservoir and so people must move out of their homes

Embankments and Flood Walls

Source: Walking Britain

Description: The banks of the river are built up in brick and concrete, to increase the channel capacity

- Reduces lateral erosion, so the river doesn't grow wider
- Protects valuable property on the riverfront.
- Looks unnatural and destroys habitats along the river bank

Dredging

Source: Channel 4

Description: Rubbish and sediment are dug up from the bottom of the river

- Widens the river channel and removes pollution from the water
- boesn't alter the look of the river
- Cheap hard engineering strategy
- Takes time to complete, and the river must be dredged regularly

Channel Straightening and Flood Relief Channel

Source: Seven Sisters

Description: The river is straightened and relief channels constructed to bypass the meanders increase the speed of river flow.

- Reduces flooding risk since water flows faster downstream
- Protects urban villages by directing flood water away.
- Expensive and disruptive of natural habitats

Flood Management

Even if a river is managed, extreme weather may occur causing the river to flood. In these instances there's not a lot which can be done.

The **local council** can try to prepare for the flood to protect its community and businesses. Flood damage can be **minimised** by:

- Putting sandbags in the doorways to reduce flood water leaking into homes through the bottom of the door.
- **Temporary flood barriers** can be put up, which act like temporary banks and increase the river's capacity.
- Valuable possessions are moved upstairs and locals are told to stay inside and upstairs.
- Roads are closed that cross the river or come close to the river banks, to reduce the risk of someone being swept away.

In the UK, the **Environmental Agency** monitors and distributes warnings when floods are likely, to give locals time to prepare and evacuate.